Mono Development for Wine

A Cry for Help

Outline

e What is Wine Mono?
* Why does it matter?
e Current status?

* How to Develop

* Building
Code Tree Overview
Using Changed Mono
Debugging
Sending Patches
Writing Tests

What is Wine Mono?

* Wine Mono is a fork of the Mono project, and a Win32 build of Mono
packaged for the Wine Project.

 Differences from upstream are avoided whenever possible.
* Wine cannot use Linux Mono because it needs to call back into Wine.

* The package is a .msi file that Wine can automatically download
and/or install, and that users can install (and uninstall) manually.

* The package also includes registry keys and files to prevent programs
from installing/needing native .NET.

* Includes some “projects” not in the main Mono repo, such as VB.

Why does it matter?

e Using MS .NET means we rely on MS to keep the download up (MS
has removed redist downloads in the past) and provide redists for
future releases.

* The .NET EULA requires a Windows license.
 We can’t use .NET to port applications because of the EULA.

* (I can’t make a very convincing argument that the broader Wine
community should care because .NET works with much less effort,
and should almost always work at least as well as Mono, but | really
don’t like to rely on MS components.)

Current Status

* Wine Mono’s compatibility is practically 0. | have seen rare cases
where it works for a normal Windows program that genuinely uses
NET.

* At the rate | am (and Alistair is) working on it, | don’t expect much
improvement in the next few years (though | keep hoping for a
breakthrough in mixed-mode).

* There are easy problems in the Wine bugzilla right now that no one is
working on (search for component=mscoree).

Building

* Fetch the code:
* git clone —recursive git://github.com/madewokherd/wine-mono

* Install Wine, gmcs, and mingw-w64 compilers for both x86 and
x86 64 targets. A 64-bit OS is not required, but old mingw may not
work.

* Run build-winemono.sh (set MAKEOPTS=-j2 to use two cores)

Code Tree Overview

* All Windows .NET embedding API’s are in the Wine code, in dlls/mscoree.

* The C parts of the Mono runtime are in mono/mono (hopefully shouldn’t
need to be touched much).

* Most .NET API’s are in mono/mcs/class/assembly/namespace/typename.cs

* Example: The System.Drawing.Drawing2D.GraphicsPath class is in
mono/mcs/class/System.Drawing/System.Drawing.Drawing2D/GraphicsPath.cs

* The namespace is everything before the last dot.
Usually the assembly name can be easily guessed based on the namespace.
System.Windows.Forms is in the Managed.Windows.Forms assembly.

Many classes under system are in the mscorlib assembly, which is located in the
corlib directory.

* \Visual Basic classes are in mono-basic.

Using Changed Mono

* To rebuild without starting from scratch, use build-winemono.sh with
the -r switch.

 After running build-winemono.sh, install by running: msiexec /i
winemono.msi

* If the version number hasn’t changed, uninstall with ‘wine uninstaller’
before installing the new misi file.

* Or you can copy individual files from image/ to
drive_c/windows/mono/mono-2.0

Debugging

e Use the WINE_MONO_TRACE environment variable to trace managed code.
Run mono --help-trace for documentation on the syntax.

* If WINE_MONO_TRACE is set, all exceptions will be printed.

e Usually this is useful, but some exceptions are benign. Mono’s winforms
usually causes an exception involving UlAutomation that can be ignored.

* To get a stack trace of an exception, use
WINE_MONO_TRACE=E:System.NotImplementedException (or fill in the
actual type).

* To trace everything that enters/exits managed code, use
WINE_MONOQO_TRACE=wrapper.

 Be careful, this can trace private/internal functions.

Sending Patches

* Usually, changes should go to the appropriate upstream project, not
Wine Mono.

* The Mono project is at http://github.com/mono, and they prefer
github pull requests.

* See https://help.github.com/articles/using-pull-requests

* The gist is that you make your own fork of upstream’s repo, push your
change to your fork, then use the github website to make the request.

* You can also make pull requests on wine-mono and its forks, or ask
me to merge some changes you need from upstream.

http://github.com/mono
https://help.github.com/articles/using-pull-requests

Writing Tests (1/2)

 Mono includes a test suite based on the nunit framework, which
vaguely reflects .NET’s behavior when it was last tested, if the APl is
from .NET.

* The official way to run the tests involves make (and Cygwin on
Windows).

* Use build-winemono.sh with the -t switch to create a stand-alone
version of the tests (in a directory named tests-net_version) that will
run on any .NET runtime.

* To run tests from that directory, run nunit-console.exe with the dll file
containing the tests you want.

Writing Tests (2/2)

 Test code is located in mono/mcs/class/<assembly>/Test
e Use the /run switch to run only one test.
» Use /fixture to run tests from a single class of tests.

Questions?

