

Coccinelle Introduction
Michael Stefaniuc
mstefani@winehq.org
Wine Project
13th October 2019

Disclaimer

● Wine is just a hobby for me

● I'm speaking for myself and not for my employer

● Trip is not sponsored

Coccinelle

“Coccinelle is a program matching and transformation engine
which provides the language SmPL (Semantic Patch Language) for
specifying desired matches and transformations in C code.“
(http://coccinelle.lip6.fr/)

http://coccinelle.lip6.fr/

Coccinelle History
● Academic research project

– Collaboration between DIKU and INRIA

– First published paper 2005

– Initially known as Tarantula (name change ~2005)

– Focus on “Collateral Evolution” in the Linux kernel

● Jan 2009 LWN article “Semantic patching with Coccinelle”
by Valerie Henson

● In the Linux kernel tree since 2010 (checker / cocci scripts)

Coccinelle Project
● Actively maintained

● Written in OCaml

● Current version: 1.0.8 (25th Sept 2019)

● Maintainer: Julia L. Lawall

● Website: http://coccinelle.lip6.fr/

● Source code: https://github.com/coccinelle

● Mailing list: cocci@systeme.lip6.fr

http://coccinelle.lip6.fr/
https://github.com/coccinelle
mailto:cocci@systeme.lip6.fr

Coccinelle Wine History
● ~2009 - First steps: long ==> LONG for 64-bit support

● 2010 - First credit in Wine git

● 2010 – Initial commit of my published cocci scripts for Wine

● Major work:

– COM cleanup

– ARRAY_SIZE

– Majority of my un-credited janitorial work

– d3dx9 effect cleanup

Glossary
● Project: coccinelle

● Script language: SmPL (Semantic Patch Language)

● Script file extension: .cocci

● Executable: spatch (not coccinelle)

Golden Rule

Coccinelle knows C!

My First SmPL

@@
typedef LONG;
@@
- long
+ LONG

● SmPL looks like

– Unified diff

– With C declarations

● Header enclosed in @@ @@

– Declares metavariables

– Name and control info between
first @@

● Body

– Context

– Add / Remove lines

ARRAY_SIZE.cocci
@ r @

type T;

T[] E;

position p;

@@

(

- (sizeof(E@p)/sizeof(E[...]))

+ ARRAY_SIZE(E)

|

- (sizeof(E@p)/sizeof(*E))

+ ARRAY_SIZE(E)

|

- (sizeof(E@p)/sizeof(T))

+ ARRAY_SIZE(E)

)

● Header

– E == expression of type array
of T

– position == records specific
position inside the code

● Body

– Disjunction

– “…” operator == anything

comma.cocci

@@

expression E1, E2;

statement S;

@@

 S

 E1

- ,

+ ;

 E2;

● Also valid body

 S
- E1, E2;
+ E1; E2;

● Smallest change possible, avoids

– code reformatting

– whitespace changes

– loosing comments

● Whole SmPL body needs to be a full
and valid C construct!
Before and after!

merge.cocci
@base@

identifier virtual.func;

statement list body;

type T;

@@

- T func(...) { body }

@@

identifier virtual.func;

statement list base.body;

@@

- return func(...);

+ body

● Using metavariable from another
rule:
rulename.metavariable

● Rule “virtual” specified on
command line:
spatch -D func=foo

● All inherited variables need to be
bound for a rule to be executed

● Runs once for each set of bound
variables

● list metavariables

wstr.cocci
@r@

identifier lvar;

initializer list chs;

@@

 WCHAR lvar[]@p = { chs, \('\0'\|0\) };

@script:python u@

lvar << r.lvar;

chs << r.chs;

wstr;

@@

coccinelle.wstr = 'L"' + "".join(map(lambda x: x[1:-1], chs)) + '"'

@@

identifier r.lvar, u.wstr;

initializer list r.chs;

@@

 WCHAR lvar[]@p =

- { chs, \('\0'\|0\) }

+ wstr

 ;

● Script rules:

– OCaml

– Python

● @initialize:python@
Runs once before any
other rule

● @finalize:python@
Runs once after all
matching was done

redundant_null_check.cocci
@@

expression E;

type T;

identifier fn = {CoTaskMemFree, free, Free,
GdipFree, HeapFree, heap_free, I_RpcFree, msi_free,
MSVCRT_free, MyFree, RtlFreeHeap, SysFreeString};

@@

(

- if (E != NULL)

 fn(..., (T)E);

|

- if (E != NULL)

- {

 fn(..., (T)E);

? E = NULL;

- }

)

● Constraints on metavariables

● Isomorphism:
Automatic transformation of SmPL

(

-if -(-E -!= -NULL-)

|

-if -(-E-)

|

-if -(-NULL -!= -E-)

)

(

fn(..., (T)E);

|

fn(..., E);

)

… Dots
● ‘...’ Matches the shortest path between stuff before/after the

dots

● ‘<... ...>’ Matches 0 or more times the stuff between
the ellipses

● ‘<+... ...+>’ Matches 1 or more times the stuff between
the ellipses on some path

● Constraints:
... when any
... when exists
... when strict
... when != x

Running spatch
● As simple as
spatch foo.cocci bar.c
spatch foo.cocci directory/

● Multiple files as one compilation unit
spatch foo.cocci bar.c barf.c foobar.c
spatch foo.cocci directory/*.c

● Checking the cocci script
spatch --parse-cocci foo.cocci

Running spatch for Wine
● Default coccinelle macro file for the Linux kernel

● Heavy C parse issues due to macros
spatch --parse-c dlls/mshtml/tests/style.c
nb good = 1570, nb passed = 35 =========> 0.93% passed
nb good = 1570, nb bad = 2158 =========> 42.65% good or
passed

● Solution: Use macro file for Wine
spatch --macro-file-builtins macros dlls/mshtml/tests/style.c
nb good = 3728, nb passed = 12 =========> 0.32% passed
nb good = 3728, nb bad = 0 =========> 100.00% good or passed

● Use my ‘coccicheck’ wrapper around spatch

Dealing with Types in Wine
● Copious use of ‘typedef’

● Dealing with multiple identical types

– Constraints
type lpjunk = {LPJUNK, PJUNK, IJunk*};

– Get rid of them
@@ typedef LPJUNK, PJUNK, IJunk; @@
(
- LPJUNK
+ IJunk *
|
- PJUNK
+ IJunk *
)

Include Files
● Default is to include local headers (--local-includes)

● Avoid using include files if possible (--no-includes)
Performance!

● When processing a directory include files are skipped.
Include them with (--include-headers)

Resources
● Better tutorials:

– http://coccinelle.lip6.fr/documentation.php

– http://coccinelle.lip6.fr/papers.php

● Examples

– Coccinelle git tree in demos/

– Linux kernel git tree in scripts/coccinelle/

● My Wine coccinelle scripts
https://github.com/mstefani/coccinelle-wine.git

http://coccinelle.lip6.fr/documentation.php
http://coccinelle.lip6.fr/papers.php
https://github.com/mstefani/coccinelle-wine.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

