
  

Having Fun With Emulators

Conflating ARM support, 32 bit macOS and world peace 
in one confusing talk



  

Agenda

● Last Wineconf André and I introduced Project 
Hangover with the goal of building a version of 
qemu that can run x86 apps in Wine on ARM
– This talk provides a status update

● Relatedly, soon there will be no 32 bit macOS 
support
– Hangover is one way to handle it

– This talk explores a few other options



  

Hangover Status

● https://github.com/andrerh/hangover
● 32 Bit Support!

– On pure 64 bit host, 64 bit Wine

● Actual applications and games usable
● Performance: Games from late 90’s / early 00’s 

playable
● Improved build system :-)



  

DLL status

● Necessary DLLs: 10 / 16
– ntdll, d3d, ws2_32, …

– Missing: mmdevapi, opengl, imm32, ...

● Nice-to-have DLLs: 05 / 12
– dsound, dinput, crypto, ...

– Missing: dwrite, crypt32, xaudio, windowscodecs

● “Auxiliary” DLLs: 0 / 14
– gphoto, sane, wpcap, ...



  

DLL options

● Write an API level wrapper
● Cross compile the Wine DLL for x86, x64
● Cross compile Unix dependencies + wine DLL

– e.g. libxml2 + libxslt ==> msxml3.dll

– Freetype ==> dwrite.dll

● Can be decided on a DLL by DLL basis



  

ARM Performance Issues

● Qemu: Generated code horrible
● Qemu: No hardware floating point support
● Wine: NtCurrentTeb → pthread_getspecific
● Wine: Interlocked* → pthread_mutex_lock
● Emulator entry / exit right now not an issue

– Will probably change once above issues are fixed



  

Other TODOs

● Debugger (→ Copy protection)
● Properly announce this on qemu devel list
● Find a good solution for msvcrt
● Exception handling still buggy



  

Mac 32 bit support

● Apple will stop supporting 32 bit code next year
● No 32 bit libs, no compiler, no 32 bit processes, 

nada



  

Option 1

● Use qemu and our thunks
● Works, but slow
● Can we do better?



  

Idea 2

● The hardware can still run 32 bit code
● Use hardware virtualization support!
● Ken made it work :-)

– Building on Sergio Gomez Del Real’s GSoC work

● Pro: Running code is FAST
● Con: Jumping in and out is SLOOOOOOW



  

Where to leave the emulator?

ApplicationWineSystem LibsOS KernelHardware

Hangover

Qemu performance :-)
HW Virtualization :-(
Interface size :-(
Host integration :-)

Qemu-linux-user

Qemu performance :-(
HW Virtualization ???
Interface size :-)
Host integration :-/

OS Virtualization

Qemu performance :-(
HW Virtualization :-)
Interface size :-)
Host integration :-(

This isn’t what Wine is 
meant for



  

qemu-linux-user on macOS

● Huw investigates this option
● Load ELF binaries inside qemu on macOS, 

emulate Linux syscalls, but use HW virt
● We pull libc, ntdll, kernel32 into the VM
● Issue 1: winemac.drv, audio, system integration
● Issue 2: GPL code
● Issue 3: Is it fast enough?



  

qemu-macos-user

● Build a Frankenstein libc that thunks to macOS 
libc

● No real advantage over previous idea
● Relies on soon unmaintained 32 bit macOS 

compilers



  

Pull everything into the emulator

● We can create 32 and 64 bit code segments 
inside the HW VM

● Call between 32 bit app and 64 bit Wine inside 
the VM is cheap

● Map 64 bit macOS pages into the VM
● Blindly repeat real syscalls outside the VM
● What could possibly go wrong?



  

Speed up qemu?

● Code generated by qemu is awful
● Ideally converting x86_32 to x86_64 code is 

way easier – just put a few operand size 
prefixes in the right places

● Still has management overhead
● We haven’t investigated this idea yet



  

Carefully engineer wrapper libs

● E.g. d3d could use the command stream as its 
“syscall” layer

● How many Win32 calls lead to a Linux syscall?
– File IO, Network, memory alloc, wineserver calls, 

sync primitives, x11 calls, opengl, sound, ...

● Having to aggressively optimize here makes 
the entire task even more difficult

● No guarantee it will be enough



  

The actual solution?

● We don’t know yet
● There may be none
● Hangover should be fast enough for installers
● It won’t run today’s games, many of which are 

still 32 bit only
● Likely macOS and ARM solutions will diverge

– Until macOS switches to ARM some day...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

