Optimizing Synchronization Primitives

Zebediah Figura

Some Win32 sync primitives

* Kernel objects * In-process objects
- Events (auto, manual) — Critical sections
~ Mutexes — SRW locks
~ Semaphores — Condition variables

— Timers - WaitOnAddress ()/

- Keyed events WakeByAddress ()

— Processes, threads, named
pipes...

Lots of little quirks...

e PulseEvent ()

* Cross-process by name or DuplicateHandle ()
* Wait-all
* Alertable waits

* NtQuervy™ ()

Kernel objects are slow

wineserver round trip, because cross-process
wineserver is single-threaded
Many modern games are very multi-threaded

Some work was already done

eventfd (2)

Single 64-bit value, increment on write (2), decrement on
read (2), blocks if zero

We can sleep or check if signaled with pol1 (2)

Events and mutexes are signaled if nonzero

Semaphores use EFD_SEMAPHORE

Extra state (mutex, semaphore) eventually needs shared memory

APC waits just use another “event”

How did it turn out?

* Pretty good

* The kernel does all of the locking, so correctness
isn’t too hard

* Wait-all is broken, but not in a way that matters

e PulseEvent () is also broken, but it doesn’t
matter

nat Saber.exe-3123)

Beat Saber.exe-317
(Beat Saber.exe-31
| LR DD R A — [
LU0 0T T Ren
- [| 1
IR |
L0 T e BeatSabemexem—— |
|
LI I WO L LT |
TN |
TR | |
MENENIT T TN I

il IJIII I|

| W;

I HEI I NEE N R |
at Saber.exe I HE 1|
I | | | [| |1l 1 ||
I I R TTIT . | B | | EENE I |
— T 111 | Il | B IR (5 B
0 | | || | TR - 1Beat Saber.exe |
X Beat Saberexe @@ | ! | I |
-~ Renderthtreed | T 10
1| BN 1 EERE TR nml CREEED 0| BN
i T I T
||] T | |1 1| T IR RIT N
| | I | 11 i | WEE Il | [
i 11 T 1 I N 1 NIEE N IEEEEE |
11T | i IR RNNND
T | Wl I T L

But can it get faster?

Well... maybe
Kernel is doing all of the work, so esync is fast

But system calls are expensive
— But Windows has to do them too...

Store event state locally

But can it get faster?

* Futexes don’t need a syscall to get/set state
* But we can’t wait on more than one

* ...unless we change the kernel

But can it go upstream?

* We can't use shared memory

— We need it for mutexes, semaphores, Nt Query* (),
event optimizations

e PulseEvent () is broken

e Wait-all is kind of broken

But can it go upstream?

* Add the missing pieces in the kernel
— Pros: simple, matches Windows

— Cons: performance could be better, is this right for Linux?

* Use migration
— Pros: avoids shared memory

— Cons: very hard to get right

* Do scheduling in user space

— Pros: PulseEvent () and wait-all can be correct, best performance?

— Cons: Needs locking, is a bit tricky, APCs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

