

Optimizing Synchronization Primitives

Zebediah Figura

Some Win32 sync primitives
● Kernel objects

– Events (auto, manual)
– Mutexes
– Semaphores
– Timers
– Keyed events
– Processes, threads, named

pipes...

● In-process objects
– Critical sections
– SRW locks
– Condition variables
– WaitOnAddress()/
WakeByAddress()

Lots of little quirks...
● PulseEvent()

● Cross-process by name or DuplicateHandle()
● Wait-all
● Alertable waits
● NtQuery*()

Kernel objects are slow
● wineserver round trip, because cross-process
● wineserver is single-threaded
● Many modern games are very multi-threaded
● Some work was already done

eventfd(2)
● Single 64-bit value, increment on write(2), decrement on
read(2), blocks if zero

● We can sleep or check if signaled with poll(2)
● Events and mutexes are signaled if nonzero
● Semaphores use EFD_SEMAPHORE
● Extra state (mutex, semaphore) eventually needs shared memory
● APC waits just use another “event”

How did it turn out?
● Pretty good
● The kernel does all of the locking, so correctness

isn’t too hard
● Wait-all is broken, but not in a way that matters
● PulseEvent() is also broken, but it doesn’t

matter

But can it get faster?
● Well... maybe
● Kernel is doing all of the work, so esync is fast
● But system calls are expensive

– But Windows has to do them too...

● Store event state locally

But can it get faster?
● Futexes don’t need a syscall to get/set state
● But we can’t wait on more than one
● ...unless we change the kernel

But can it go upstream?
● We can’t use shared memory

– We need it for mutexes, semaphores, NtQuery*(),
event optimizations

● PulseEvent() is broken
● Wait-all is kind of broken

But can it go upstream?
● Add the missing pieces in the kernel

– Pros: simple, matches Windows
– Cons: performance could be better, is this right for Linux?

● Use migration
– Pros: avoids shared memory
– Cons: very hard to get right

● Do scheduling in user space
– Pros: PulseEvent() and wait-all can be correct, best performance?
– Cons: Needs locking, is a bit tricky, APCs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

