Wine Hacking

Or how to get your MRs upstreamed

Huw Davies

Upstreaming MRs

It must be simpler than navigating the Minneapolis Skyway!

Why review?
We'd like to avoid

COMMENT
CREATED MAIN (LOOP & TIMING CONTROL.
ENABLED CONFIG FiLE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE CODE
HERE HAVE. CODE.

ARAAAAAA
ADKFISLKDFISDKLET

MY HANDS ARE TYPING WORDS
HAAAARAAAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

https://xkcd.com/1296/

Who's who

Wil involve interaction between
e You, the author

e At |least one reviewer

Your role

* Your job Is to explain your code to the reviewer

 The easliest way to do this is to keep the code simple!
* You are the world's expert on your piece of code

Do not assume that the reviewer is also an expert

The reviewer might not be a maintainer

Reviewer's role

* Jo help!
» Will either
* Approve MR - yay!
* Provide constructive feedback

 The aim iIs to produce a high quality contribution

Possible workflow

do

research and code();

sleep () ;

1f (self review() !'= ok) continue;
submit () ;

upstreamed = wait feedback() ;

} while ('upstreamed) ;

Possible workflow

do

sleep()

1f (self review() !'= ok) continue;
submit () ;

upstreamed = wait feedback() ;

} while ('upstreamed) ;

Easy things to get right

Whitespace

 Match formatting to surrounding code
 Usually 4-space indents

 \Watch out for tabs and end-of-line whitespace
Do add spaces either side of binary ops

(x >= y + 1) ratherthan (x>=y+1)

More easy things to get right

» Generally we prefer snake case over CamelCase
o Likewise name over lpszName

* https://wiki.winehqg.org/Submitting_Patches

https://wiki.winehq.org/Submitting_Patches

Keep each commit small

Each commit should be as small as possible

Diff stats like this don't encourage the reviewer

dlls/foo/bar.c | 345 +++++++++++++4++
dlls/foo/tests/bar.c | 456 +++++++++++++++++++

How to keep commits small

 One idea per commit

* The overall feature doesn't need to work in one go
» Refactor first then add new things

* |t's almost always possible to simplify things!

 Use helper functions

Helper functions

Can help to reduce commit size

* |mplement as stub and flesh out in a later commit
* Reusing existing code? Move to helper first
 Can help when the control flow looks awkward

 However don't add a helper before calling it (dead code)

Write tests!
Why?

* To show that your implementation is correct
This In turn helps explain your change

* To prevent future regressions

Write tests!

How?

» |deally add them at the start of the MR with todo wine
Then remove the todo wine in the implementation’'s commit

* Otherwise they can go in at the end of the MR
* [ry to keep them simple too

 Make sure they pass after each commit!

Commit message 1

* Write In the imperative:

"foo: Make x do y." ratherthan "foo: This makes x do y."

o Keep it short

 Avoid things like "Fix blah"

 Generally the word "Also" means you can split the patch

Commit message 2

* A more detailed explanation can follow on subsequent lines

* |Include any relevant Wine-Bug: tag

 Update if the code has changed

* Can take longer to write a good commit msg than the code itself!

Possible workflow

ole
research and code() ;

1f (self review() !'= ok) continue;
submit () ;
upstreamed = wait feedback() ;

} while ('upstreamed) ;

Why the sleep () ?

* o allow you to context switch

 You'll come back with a fresh prospective
 An actual sleep isn't a bad idea!

* Also prevents the reviewer being swamped

"Huw is not a compiler” [1]

[1] Jeremy White, WineConf 2019

Possible workflow

do

research and code();

sleep () ;

i1f (= ok) continue;
submit () ;

upstreamed = wait feedback() ;

} while ('upstreamed) ;

Self review 1

Global overview

Look at the patch in its entirety
 Does commit msg make sense?
* Does formatting match??
* Check frees / releases

e Can control flow be simplified?

Self review 2

Local overview

Look at each line of code carefully
* |s it doing what you think??
* |s it necessary?

e Can it be split?

Self review 3

 Keep in mind all comments already received
Even from earlier versions
 |f you find it hard, think about the reviewer and simplify!

* Practise reviewing other people's code

Possible workflow

do

research and code() ;

sleep () ;

submit () ;
upstreamed = wait feedback() ;

} while ('upstreamed) ;

Possible workflow

do

research and code() ;
sleep () ;

1f (self review() !'= ok) continue;

upstreamed = wait feedback() ;

} while ('upstreamed) ;

Merge Requests

Size

 Keep the number of commits per MR below around five
e |t's fine to split your work over several MRs
* This keeps things manageable for the reviewer

* A change in an early commit doesn't require updating loads of commits

Merge Requests

Mechanics

* Walit for the first MR to be merged before sending the next
 Jo preserve the discussion trall
 Push updated commits to the same MR - don't create a new one

 When splitting, mention the original MR in new one

Possible workflow

do

research and code() ;

sleep()

1f (self review() !'= ok) continue;
submit () ;

upstreamed =

} while ('upstreamed) ;

How to respond to feedback

 Read and digest all of the comments

* |f you don't understand, think

* |f you still don't understand, ask

* Ensure that you address all of the comments
 One comment may apply to several similar issues

* |t's not arace! Don't send the next version immediately

But my MR didn't get any feedback!

* Your work is likely too complicated or not obviously correct

* Feel free to ask for an update

 You can now assign a reviewer yourself

Possible workflow

do

research and code();

sleep () ;

1f (self review() !'= ok) continue;
submit () ;

upstreamed = wait feedback() ;

} while ('upstreamed) ;

Success!

 Update any bugs
e Party!

Conclusions

» Keep everything simple!
 Address all feedback
* [ake your time!

e Good luck!

