
Huw Davies

Wine Hacking
Or how to get your MRs upstreamed

Upstreaming MRs

It must be simpler than navigating the Minneapolis Skyway!

Why review?
We'd like to avoid

https://xkcd.com/1296/

Who's who

• Will involve interaction between

• You, the author

• At least one reviewer

Your rôle

• Your job is to explain your code to the reviewer

• The easiest way to do this is to keep the code simple!

• You are the world's expert on your piece of code

• Do not assume that the reviewer is also an expert

 The reviewer might not be a maintainer

Reviewer's rôle

• To help!

• Will either

• Approve MR - yay!

• Provide constructive feedback

• The aim is to produce a high quality contribution

Possible workflow

do
{
 research_and_code();
 sleep();
 if (self_review() != ok) continue;
 submit();
 upstreamed = wait_feedback();
} while (!upstreamed);

Possible workflow

do
{
 research_and_code();
 sleep();
 if (self_review() != ok) continue;
 submit();
 upstreamed = wait_feedback();
} while (!upstreamed);

Easy things to get right
Whitespace

• Match formatting to surrounding code

• Usually 4-space indents

• Watch out for tabs and end-of-line whitespace

• Do add spaces either side of binary ops

 (x >= y + 1) rather than (x>=y+1)

More easy things to get right

• Generally we prefer snake_case over CamelCase

• Likewise name over lpszName

• https://wiki.winehq.org/Submitting_Patches

https://wiki.winehq.org/Submitting_Patches

Keep each commit small

Each commit should be as small as possible

Diff stats like this don't encourage the reviewer

 dlls/foo/bar.c | 345 +++++++++++++++
 dlls/foo/tests/bar.c | 456 +++++++++++++++++++

How to keep commits small

• One idea per commit

• The overall feature doesn't need to work in one go

• Refactor first then add new things

• It's almost always possible to simplify things!

• Use helper functions

Helper functions
Can help to reduce commit size

• Implement as stub and flesh out in a later commit

• Reusing existing code? Move to helper first

• Can help when the control flow looks awkward

• However don't add a helper before calling it (dead code)

Write tests!
Why?

• To show that your implementation is correct

 This in turn helps explain your change

• To prevent future regressions

Write tests!
How?

• Ideally add them at the start of the MR with todo_wine

 Then remove the todo_wine in the implementation's commit

• Otherwise they can go in at the end of the MR

• Try to keep them simple too

• Make sure they pass after each commit!

Commit message 1

• Write in the imperative:

 "foo: Make x do y." rather than "foo: This makes x do y."

• Keep it short

• Avoid things like "Fix blah"

• Generally the word "Also" means you can split the patch

Commit message 2

• A more detailed explanation can follow on subsequent lines

• Include any relevant Wine-Bug: tag

• Update if the code has changed

• Can take longer to write a good commit msg than the code itself!

Possible workflow

do
{
 research_and_code();
 sleep();
 if (self_review() != ok) continue;
 submit();
 upstreamed = wait_feedback();
} while (!upstreamed);

Why the sleep()?

• To allow you to context switch

• You'll come back with a fresh prospective

• An actual sleep isn't a bad idea!

• Also prevents the reviewer being swamped

 "Huw is not a compiler" [1]

[1] Jeremy White, WineConf 2019

Possible workflow

do
{
 research_and_code();
 sleep();
 if (self_review() != ok) continue;
 submit();
 upstreamed = wait_feedback();
} while (!upstreamed);

Self review 1
Global overview

Look at the patch in its entirety

• Does commit msg make sense?

• Does formatting match?

• Check frees / releases

• Can control flow be simplified?

Self review 2
Local overview

Look at each line of code carefully

• Is it doing what you think?

• Is it necessary?

• Can it be split?

Self review 3

• Keep in mind all comments already received

 Even from earlier versions

• If you find it hard, think about the reviewer and simplify!

• Practise reviewing other people's code

Possible workflow

do
{
 research_and_code();
 sleep();
 if (self_review() != ok) continue;
 submit();
 upstreamed = wait_feedback();
} while (!upstreamed);

Possible workflow

do
{
 research_and_code();
 sleep();
 if (self_review() != ok) continue;
 submit();
 upstreamed = wait_feedback();
} while (!upstreamed);

Merge Requests
Size

• Keep the number of commits per MR below around five

• It's fine to split your work over several MRs

• This keeps things manageable for the reviewer

• A change in an early commit doesn't require updating loads of commits

Merge Requests
Mechanics

• Wait for the first MR to be merged before sending the next

• To preserve the discussion trail

• Push updated commits to the same MR - don't create a new one

• When splitting, mention the original MR in new one

Possible workflow

do
{
 research_and_code();
 sleep();
 if (self_review() != ok) continue;
 submit();
 upstreamed = wait_feedback();
} while (!upstreamed);

How to respond to feedback

• Read and digest all of the comments

• If you don't understand, think

• If you still don't understand, ask

• Ensure that you address all of the comments

• One comment may apply to several similar issues

• It's not a race! Don't send the next version immediately

But my MR didn't get any feedback!

• Your work is likely too complicated or not obviously correct

• Feel free to ask for an update

• You can now assign a reviewer yourself

Possible workflow

do
{
 research_and_code();
 sleep();
 if (self_review() != ok) continue;
 submit();
 upstreamed = wait_feedback();
} while (!upstreamed);
finalize();

Success!

• Update any bugs

• Party!

Conclusions

• Keep everything simple!

• Address all feedback

• Take your time!

• Good luck!

