WINE and HID

HID Devices and WINE

Presented 2015 WineConf
Vienna, Austria

By Aric Stewart

Presentation Goals

| would like to get you all generally
familiar with the HID architecture and
what | am trying to implement and why |
am taking the approach | have chosen

Someone here may actually be
interested enough to want to help and
this gives some good foundations.

Why work on this?

» Platform specific gamepad (joystick)
code duplicated in a variety of locations,
bring them all together to a common
place

- dinput, winmm
- Xinput(future), rawinput(future)

* Improve performance and functionality
- mice in dinput

« Some applications work directly with HID
devices and hid.dll

What this is not

Will not magically fix all joysticks

Will not magically make the xbox 360
controller work

Will not magically make xinput work

Will (mostly) not be directly user visible
at all

Outline

Hid Architecture
* Plug and Play

 Detalls on HID internals

- Platform Specific Details and Issues
- OS X
- Linux

* Ask Question at any time

* | am not a windows kernel developer

- But that is ok, this is not windows kernel
development

 The proposed HID architecture is 'Driver
Like'
- But we are not really a driver
* Native HID device drivers? Not likely...

- Why? It would be really neat...

HID Stack Introduction - Simplified

User

Kermel

3

IRP Interface Class

e

IRP and Callback Transport

Interface

irtesy of MSDN

HID User architecture

User Space programs can use HID.dlII
in 2 ways.

 Call hid.dll APIs HidD_xxx and
HidP_xxx functions

» Directly send HID class IOCTLS to
the device

Either way the HID device is a system
device that is detectable via SetupAPI
and is expected to be able to be

Opened, Closed, Read and Written to.

HID 'Kernel' Stack

Applications
linked to hid.dif

The HID device that the user mode
applications or dlls is accessing is

User Mode actually a class driver, or driver pair,

Legend Kemel Mode which represents the underlying
System-supplied Vendor. || Vendor-suppiied upper- communications directly to the

componeant supplied driver level drivers are optional

‘ slack] and device speciic hardware.

Vendor-supplied

companent
- IRP Interface
dynamic link to HID

____F_’L_JPPPE _nBL_JEiT_s_“ | HID class driver (hidclass. sys) }——l hidparse sys

IRP and callback interface

A vendor-supplied HID X
minidriver is required if a HID
system-supplied HID minidriver

minidriver does not support —_—
the device's port or bus,

Port or bus
driver stack

Port or bus HW

tesy of MSDN

t simply a hardware thing plugged into the
levice' is an object , accessible via CreateFile
sponse to various IOCTLs and hardware style API

ost hardwares devices actually have long chains of @

e objects called Device Stacks. E

Don't be scared by the big MSDN Stacks:
eally all we care about is this:

FDO : Function Device,
Generally describes the ®
device that talks UP the

driver stack.

Hidclass Device +
Minidriver Transport

(FDO) PDO: Physical Device, ®
Generally describes the
i device that talks DOWN

the driver stack.

Bus Device

De\(ice Stgcks

filter DO
{created by filter driver)

FDO
(created by HID class &
miniclass drivers)

Joystick
| Device Stack
filter DO
{created by filter driver)

PDO
(created by USE Hub

bus driver)

T

FDO
(created by USE Hub
driver)
| USE Hub
FDO Device Stack

(created by USB Host
Cntrir bus driver pair)

ili

FDO
(created by USE Host
Controller driver pair) USB

| Hast Controller
PDO Device Stack

(created by PCI
bus driver)

il

FDO
[created by PCI driver)

r PCI Bus
FDO Device Stack

(created by root
bus driver)

\‘Image courtesf/ of MSDN

User Mode

Kemel Mode

Upper-Level
Class Filter Driver
HID USE HID
Miniclass Driver Class Driver

Lower-Leve|
Device Filter Driver

USE Hub

Bus Driver
USBE Host Controller USB Host Controller
Bus Miniclass Driver Bus Class Driver

Class Driver / Minidriver

Two sides of the same coin

» Class Drivers provide most of the
upper level facing interfaces

e Minidrivers are the transport drivers
* The minidriver access the physical
device and lower drivers in the chain

Minidriver calls a registration function in
the class driver on DriverEntry. The class
driver takes over many of the driver entry
points, such as handling IOCTLs, Reads,
Writes and AddDevice

Together they are the top level FDO for
the HID device's device stack.

User mode Client
Dinput.dll, Xinput.dll
ErlEee.

Funﬁn Ealls

Hid.dll

HID device Hidclass.sys

IRP_MJ_INTERNAL_DEVICE_CONTROL

OS Native Handle} winehidminidriver.sys

N
Nativiuttions

Underlaying OS Implementation

WINE's HID architecture

The area in blue is our
pseudo-driver (FDO) area.

We need the client facing

parts to be as exact to

windows as we can.

Devices, ioctls, etc...

Our hidclass.sys and

minidrivers are living in

user mode

» Get to ignore 90% of the
complexities of windows
driver development

* Only 1 device, don't really
have a bus device or a
device stack as our PDO is
generally just a handle to
the native device

» Platform specific code all

goes in the minidriver

winehidminidriver.sys

. Why no Windows Native Minidrivers?

* They expect kernel functions to exists
- Most of which are stubs at best

* They expect to communicate to, at best,
a bus device, or even directly to
hardware

* Require functional Plug and Play driver
detection loading and device creations
processes

» Cannot think of any seriously useful
examples or demand

Plug and Play

(The parts we care about)

Bus Enumeration of devices

- On power-up do the insertion process
for every located device

* Driver locating and loading

* Hot plug insertion and removal of
devices

* Notifications up to the user level

- RegisterDeviceNotification

Bus I.eriv.e.r
(PCI/PCMIA, and so on)

PnP on Windows

PnP Manager

D eé?g ;ﬁet;a;dgu Oa e —o— lolmvalidataDaviceHalations —

Develops list of
child PDOs

Reports POO ~— JHF_ AN QUERY_DEVICE_RELATIONS j

188 AN QUERY ——€&)—

Heports device |D

Determines device
D= of child devices

Locate IMF install
saction. Install and
initialize driver

H .

Hepor‘tS reSOurCe E ... a@...
reguirements :

Call Addlavica

L IRP_MN_QUERY_RESOURCE_REQUIREMENTS (-

Determines
configuration

.
You fe— 1RP_MN_START_DEVICE

The bus device is responsible for
enumerating devices.

When a new device is found a
message is sent to the PnP
Manager which locates a driver,
loads and initializes the driver, if
not already loaded

Then the PnP Manager calls
AddDevice in the driver to setup
the device with the bus PDO.
Finally IRP_MN_START_DEVICE
is sent

Image courtesy of “Programming the Microsoft Windows Driver Model”

By Walter Oney

Device Is

~

Physically Absent

r s

from Bus Slat

User plugs in
the device

Device is
Physically Presant

PnP Insertion / Removal

PnP Mgr
& bus driver
enumerate
the device

h

Device is
Enumerated

PnP Manager,

IRP_MN_ Stopped
REMOVE_ State
DEVICE IRP_MHN_
{dauice HEMDVE_ L
physmalw DEV|CE IRP_MN_ IRP_MN_
ra‘nougd] START_ ETG F"_
DEVICE DEVICE
(Remove-Pending Surprise-Removed Stop-Pending
k State State State
I 3 [1
IRP_MN
IRP_MN_ | IRP_MMN_ IRP_MMN_ e
QUERY_ |caNcer. [BFMN QUERY | CANCEL
REMOVE_ | REMOVE_ REMOVAL STOP_ [31op
DEVICE DEVICE DEVICE DEVICE
r r ¥
Started
State

IRP_MN
etc., identify & REMOVE
load the driver(s) DEVICE
(call DriverEntry (device
routines) present)
k.
Enumerated .
& Drivers Initialized -
rvers iniaiize PnP Mgr calls
AddDevice() rins

FDO & Filter

Created & Attached

L

DOs

PnP Mor assigns resources

and sends

IRP_MM_START_DEVICE

Image courtesy of MSDN

PnP in WINE

 We don't have anything really
- No bus drivers
- PlugPlay service is a stub

* Rough plug and play enumeration and
discovery implemented in hidclass and
the HID minidriver not cleanly separated

e Do we need more?

- It would be neat but really what do we
need?

HID / hidclass Internals

Feel free to check out now if your
interest has been satisfied

MSDN has a lot of good information

Generally driver development books are
less helpful

“Programming the Microsoft Windows
Driver Model” By Walter Oney has a
great chapter
(http://flylib.com/books/en/4.168.1.84/1/)

Technical Details

"« The USB HID specification
* Devices and SetupAPI
e Partner Drivers / Minidrivers
* Wine details

e Platform details
e HID Clients

HID and USB

HID devices are not required to be USB

 However the HID specification is tightly
coupled with the USB specification

e Non-USB devices fake USB information

» Constant values such as Usages and
Usage Pages all match the USB spec

USB and HID

e (Given a device

- get device information (VendorlD,
ProductlD, Strings, etc...)

- get the report descriptor
- read and write reports to the device

 Turn HID Report Descriptors into
PHIDP_PREPARSED DATA for the
HidP_XxX functions

e Read and write individual data elements
In a report

0x05, 0x01,
0x09, 0x05,
Oxa1, 0x01,
Oxa1, 0x00,
0x85, 0x01,
0x05, 0x09,
0x19, 0x01,
0x29, 0x10,
0x15, 0x00,
0x25, 0x01,
0x95, 0x10,
0x75, 0x01,
0x81, 0x02,
0x05, 0x01,
0x09, 0x30,
0x09, 0x31,
0x09, 0x32,
0x09, 0x33,
0x15, 0x81,
0x25, Ox7f,
0x75, 0x08,
0x95, 0x04,
0x81, 0x02,
0xcO,

OxcO

Report Descriptors

put Reports, Output Reports and Feature Reports

/I USAGE_PAGE (Generic Desktop)
/I USAGE (Game Pad)
// COLLECTION (Application)

I
I
I
I
I
i
I
I
I
i
I
i
i
I
I
I
I
I
I
I

COLLECTION (Physical)
REPORT_ID (1)
USAGE_PAGE (Button)
USAGE_MINIMUM (Button 1)
USAGE_MAXIMUM (Button 16)
LOGICAL_MINIMUM (0)
LOGICAL_MAXIMUM (1)
REPORT_COUNT (16)
REPORT_SIZE (1)

INPUT (Data,Var,Abs)
USAGE_PAGE (Generic Desktop)
USAGE (X)

USAGE (Y)

USAGE (2)

USAGE (Rx)
LOGICAL_MINIMUM (-127)

LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (4)

INPUT (Data,Var,Abs)

/I END_COLLECTION
/ END_COLLECTION

- HID devices and SetupAPI

\2AHID#vid_vvvv&pid_pppp&mi_ii#aaaaaaaaaaaaaaaa#{4d1e55b2-f16f-11cf-88cb-001111000030}

o &mi_ii or &ig_ii (Xinput compatible)
e SetupDiGetClassDevs and friends
» CreateFile

 What are 'Top Level Collections'?

- A multifunction device
(mouse/keyboard) may have more
than 1 top level collection

- Ends up appearing as 2 separate HID
devices

* The hidclass.sys class driver is a library
present to make writing HID drivers
much simpler

* In DriverEntry calls the registration
function it replaces a lot of entry points

e Uses Internal IOCTLS to communicate

There are not a lot of minidrivers out there because Windows provides
quite a number of built-in mindrivers to cover most of the existing
common bus types on a system.

Bluetooth LE Hidbthle.sys Win 8+

General Purpose 10 Hidinterrupt.sys Win 10+

In Wine

« Just starting to get into Wine. Basic
structure approved by Alexandre

* Winehidminidriver.sys loaded all the
time at initialization as a system service

* L oads the appropriate bits for the
platform transport and handles all the
PnP enumeration and insertion logic

e Hidclass can support multiple mindriver
registrations in 1 instance

* Try to mostly support/preserve the
HidClass / Minidriver separation

In Wine...

"« Theoretically other minidrivers could be
written.

 All platform specific code lives here

« PHIDP_PREPARSED DATA generation
[proposed]
- IOCTL_WINE_HID GET_PREPARSED SIZE

- JOCTL_WINE_HID GET PREPARSED

OS X

:':-"':-""IOHIDXXX APls give us just what we
want

e Direct access to ReportDescriptors and
Reports from the device

* |Include access to keyboard and Mouse
devices.

* Mostly complete for Input Reports
e Output reports presently unimplemented

* Force Feedback is missing from
descriptors and will have to be built by
hand

Linux, hidraw

* My Linux knowledge is much more
imited...

* hidraw gives us direct access to
everything we want, Descriptors,
reports, read, write...

e |tis considered internal and none of the
devices are given user access

» Xbox devices, and maybe others, do not
appear in hidraw

Linux, input

 No access to reports or descriptors,
would have to build all the connections
by hand

* No access to most of the underlying
device information; usb strings, serial
numbers, usages for device or elements

 Have to hand build Report Descriptors
and Reports

Hid Clients

. Raw Input
e Dinput / Xinput/ Winmm

 Of course, direct HID access from
Applications

Rawlinput

"+ Mostly lightly wrapped HID
« WM _INPUT messages
* RegisterRawlnputDevices

 Need device discovery, access to the
messaging system

Dinput, Xinput, Winmm

Dinput reported as the default windows
client for Joystick (0x1 0x4) and
GamePad devices (0x1 0x5) devices

Having them all as HID clients
eliminates duplicated platform specific
code

Hopefully clears the path for cleaner
implementations for xinput.dl|

Want to help?

- Thanks for all the code review!
* Linux input developer

- The linux minidriver?
 The HID clients, Rawlnput, xinput etc...

« Comment? Questions? Suggestions?
* Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

