

vkd3d-shader and the HLSL compiler

Giovanni Mascellani
gmascellani@codeweavers.com

CodeWeavers, Debian

6 October 2022

WineConf 2022, Minneapolis

mailto:gmascellani@codeweavers.com

Who am I?
● Mathematician in a previous life (but I still feel like one), always

passionate about computers and programming
● Love free software (contributing to Debian since 2008, a bit less

lately)
● Love making things work in “unexpected” ways: Wine, emulators, …
● Met people from Wine at FOSDEM 2022
● Working with CodeWeavers since 2020
● Spent some time on the HLSL compiler
● You probably know what I’ll be talking about better than me! ;-)

vkd3d
● Implementation of Direct3D 12 on top of Vulkan
● Developed (mostly) by CodeWeavers for Wine
● Wine’s d3d12.dll is a thin layer on top of vkd3d (dxgi.dll

and d3dcompiler.dll also pick from vkd3d{,-shader})
● But it’s independent of Wine: you can use it for porting your

application (demo applications provided)
● LGPL-2.1+

vkd3d components
● vkd3d-shader: compiles shaders between

different formats
● vkd3d: translates D3D12 calls to Vulkan
● vkd3d-utils: source porting utilities (not used

by Wine)
● Each of those depends on the previous ones

vkd3d-shader
● SM1: Microsoft bytecode format,

shader model 1-3
● SM4: Microsoft TPF format in a

DXBC container, shader model 4-5
● SM6: Microsoft DXIL format in a

DXBC container, shader model 6
● HLSL: Microsoft source format
● SPIR-V: Vulkan binary format
● GLSL: OpenGL/Vulkan source format
● (MSL: Apple source format)

● SM1, SM4 → text
● SM4 → SPIR-V
● HLSL → SM1, SM4
● (ongoing: SM1 → SPIR-V)
● (ongoing: SM6 → SPIR-V)
● (Wine: SM1, SM4 → GLSL)
● (Wine: text → SM1)

vkd3d-compiler
$./vkd3d-compiler -x hlsl -b dxbc-tpf -p
vs_5_0 -e vs_main -o gears_vs.dxbc gears.hlsl
$./vkd3d-compiler -x dxbc-tpf -b d3d-asm
gears_vs.dxbc
$./vkd3d-compiler -x dxbc-tpf -b spirv-
binary -o gears_vs.spirv gears_vs.dxbc
$ spirv-dis gears_vs.spirv
VKD3D_SHADER_DEBUG=trace to see some internals!

vkd3d_shader_compile()
static const char triangle_hlsl[] = "...";

struct vkd3d_shader_hlsl_source_info hlsl_info = { 0 };
struct vkd3d_shader_compile_info info = { 0 };
struct vkd3d_shader_code vs;
char *messages;
int res;

hlsl_info.type = VKD3D_SHADER_STRUCTURE_TYPE_HLSL_SOURCE_INFO;
hlsl_info.entry_point = "vs_main";
hlsl_info.profile = "vs_5_0";

vkd3d_shader_compile()
info.type = VKD3D_SHADER_STRUCTURE_TYPE_COMPILE_INFO;
info.next = &hlsl_info;
info.source.code = triangle_hlsl;
info.source.size = strlen(triangle_hlsl);
info.source_type = VKD3D_SHADER_SOURCE_HLSL;
info.target_type = VKD3D_SHADER_TARGET_DXBC_TPF;

res = vkd3d_shader_compile(&info, &vs, &messages);
assert(res == VKD3D_OK);

Using vkd3d-utils
static const char triangle_hlsl[] = "...";

ID3DBlob *vs;
HRESULT hr;

hr = D3DCompile(triangle_hlsl, strlen(triangle_hlsl),
NULL, NULL, NULL, "vs_main", "vs_5_0", 0, 0, &vs, NULL);
assert(SUCCEEDED(hr));

HLSL: what’s (mostly) there?
● Parsing and SM4 code generation (SM1 is weaker)
● Fundamental types (scalars, vectors and matrices), arrays, structs
● Basic control flow (if, for, while)
● Most arithmetic and logic operators, type conversions, vector swizzling
● Complex initializers
● A fair number of intrinsics, including matrix multiplication
● Textures and samplers, some related methods
● Preprocessor
● Dead code elimination, copy propagation, constant folding

HLSL: what’s missing?
● Function calls (i.e., function inlining)
● “Advanced” flow control (break, continue, return)
● Many other intrinsics and methods
● Function overloading
● A lot of missing details and corner cases
● Vectorization
● Some of these are already in the Proton branch
● Usually if it succeeds, then it is correct

Code overview
● vkd3d_shader_main.c: entry points, general helpers
● preproc.l, preproc.y: preprocessor
● hlsl.l, hlsl.y: HLSL parser, generates a program in a custom

internal IR
● hlsl_codegen.c: runs a number of lowering and optimization

passes (hlsl_emit_bytecode())
● hlsl_sm{1,4}.c: code generation (hlsl_sm{1,4}_write())
● hlsl.c: HLSL entry point (hlsl_compile_shader()) and

helpers (mostly for handling types and IR)

Sources
● Upstream: https://gitlab.winehq.org/wine/vkd3d/
● Proton branch with more HLSL features:

https://github.com/ValveSoftware/vkd3d/tree/pro
ton_7.0

● Preliminary DXIL → SPIR-V patches:
https://gitlab.winehq.org/cmccarthy/vkd3d/-/tree/
sm6

https://gitlab.winehq.org/wine/vkd3d/
https://github.com/ValveSoftware/vkd3d/tree/proton_7.0
https://github.com/ValveSoftware/vkd3d/tree/proton_7.0
https://gitlab.winehq.org/cmccarthy/vkd3d/-/tree/sm6
https://gitlab.winehq.org/cmccarthy/vkd3d/-/tree/sm6

vkd3d-shader and the HLSL compiler

Giovanni Mascellani
gmascellani@codeweavers.com

CodeWeavers, Debian

6 October 2022

WineConf 2022, Minneapolis

mailto:gmascellani@codeweavers.com

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14

