vkd3d-shader and the HLSL compiler

Giovanni Mascellani
gmascellani@codeweavers.com

CodeWeavers, Debian
6 October 2022

WineConf 2022, Minneapolis


mailto:gmascellani@codeweavers.com

Who am |?

Mathematician in a previous life (but I still feel like one), always
passionate about computers and programming

Love free software (contributing to Debian since 2008, a bit less
lately)

Love making things work in “unexpected” ways: Wine, emulators, ...
Met people from Wine at FOSDEM 2022

Working with CodeWeavers since 2020

Spent some time on the HLSL compiler

You probably know what I'll be talking about better than me! ;-)



vkd3d

Implementation of Direct3D 12 on top of Vulkan
Developed (mostly) by CodeWeavers for Wine

Wine's d3d12.d1l1 is a thin layer on top of vkd3d (dxg1i.d11
and d3dcompiler.dll also pick from vkd3d{, -shader})

But it's independent of Wine: you can use it for porting your
application (demo applications provided)

LGPL-2.1+



vkd3d components

« vkd3d-shader: compiles shaders between
different formats

e VKOC

* VKGC

30

30

: translates D3D12 calls to Vulkan

-utils: source porting utilities (not used

by Wine)
* Each of those depends on the previous ones



vkd3d-shader

 SM1: Microsoft bytecode format,
shader model 1-3

« SM4: Microsoft TPF format in a

DXBC container, shader model 4-5

e SM6: Microsoft DXIL format in a

DXBC container, shader model 6

e HLSL: Microsoft source format

* SPIR-V: Vulkan binary format
* GLSL: OpenGL/Vulkan source format
* (MSL: Apple source format)

e SM1, SM4 -, text

e SM4 - SPIR-V

* HLSL - SM1, SM4

e (ongoing: SM1 - SPIR-V)
e (ongoing: SM6 - SPIR-V)
* (Wine: SM1, SM4 - GLSL)
* (Wine: text - SM1)



vkd3d-compiler

$ ./vkd3d-compiler -x hlsl -b dxbc-tpf -p
Vs 5 0 -e vs_mailn -0 gears_vs.dxbc gears.hlsl

$ ./vkd3d-compiler -x dxbc-tpf -b d3d-asm
gears_vs.dxbc

$ ./vkd3d-compiler -x dxbc-tpf -b spirv-
binary -0 gears_vs.spilrv gears_vs.dxbc

$ spirv-dis gears_vs.spirv
VKD3D_SHADER_DEBUG=trace to see some internals!



vkd3d_shader_ compile()

static const char triangle_hlsl[] = " ... ";

struct vkd3d shader_ hlsl _source info hlsl _info = { 0 };
struct vkd3d_shader_compile_info info = { 0 };

struct vkd3d_shader_code vs;

char *messages;

int res;

hlsl _info.type = VKD3D_SHADER_STRUCTURE_TYPE_HLSL_ SOURCE_INFO;
hlsl_info.entry_point = "vs_main";
hlsl_info.profile = "vs_5 _0";



vkd3d_shader_ compile()

info.type
info.next

VKD3D_SHADER _STRUCTURE_TYPE_COMPILE _INFO;
hlsl _1info;

info.source.code = triangle hlsl;

info.source.size = strlen(triangle_hlsl);
info.source_type = VKD3D_SHADER SOURCE _HLSL;
info.target type = VKD3D_SHADER _TARGET_DXBC_TPF;

res = vkd3d_shader_ compile(&info, &vs, &messages);

assert(res

= VKD3D_0K);



Using vkd3d-utils

static const char triangle_ hlsl[] = " ... ";

ID3DBlob =*vs;
HRESULT hr;

hr = D3DCompile(triangle_hlsl, strlen(triangle_hlsl),
NULL, NULL, NULL, "vs main", "vs 5 0", 0, @, &vs, NULL);

assert(SUCCEEDED(hr));



HLSL: what's (mostly) there?

Parsing and SM4 code generation (SM1 is weaker)

Fundamental types (scalars, vectors and matrices), arrays, structs

Basic control flow (1f, for, while)

Most arithmetic and logic operators, type conversions, vector swizzling

Complex initializers

A fair number of intrinsics, including matrix multiplication

* Textures and samplers, some related methods

* Preprocessor

e Dead code elimination, copy propagation, constant folding



HLSL: what’s missing?

Function calls (i.e., function inlining)

“Advanced” flow control (break, continue, return)

Many other intrinsics and methods
* Function overloading

A lot of missing details and corner cases

* Vectorization

* Some of these are already in the Proton branch
e Usually if it succeeds, then it is correct



Code overview

vkd3d_shader_main.c: entry points, general helpers

preproc.l, preproc.y: preprocessor

hlsl.l, hlsl.y: HLSL parser, generates a program in a custom
Internal IR

hlsl _codegen.c: runs a number of lowering and optimization
passes (hlsl_emit_bytecode())

- hlsl_sm{1,4}.c: code generation (hls1 _sm{1,4} write())

e hlsl.c: HLSL entry point (hls1_compile_shader()) and
helpers (mostly for handling types and IR)



Sources

* Upstream: https://gitlab.winehqg.org/wine/vkd3d/

e Proton branch with more HLSL features:

https7://((5;ithub.com/VaIveSoftware/vkd3d/tree/pro
ton 7.

* Preliminary DXIL - SPIR-V patches:

htt%s://gitlab.winehq.org/cmccarthy/vkdBd/-/tree/
sm


https://gitlab.winehq.org/wine/vkd3d/
https://github.com/ValveSoftware/vkd3d/tree/proton_7.0
https://github.com/ValveSoftware/vkd3d/tree/proton_7.0
https://gitlab.winehq.org/cmccarthy/vkd3d/-/tree/sm6
https://gitlab.winehq.org/cmccarthy/vkd3d/-/tree/sm6

vkd3d-shader and the HLSL compiler

Giovanni Mascellani
gmascellani@codeweavers.com

CodeWeavers, Debian
6 October 2022

WineConf 2022, Minneapolis


mailto:gmascellani@codeweavers.com

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14

