

3 / 49

Table of contents

1 Overview about Pipelight

2 Browser API & Communication

3 Drawing & Input events

4 Browser plugins and Wine

5 Browser & Plugin compatibility

6 Security

4 / 49

Overview about Pipelight

Overview about Pipelight

5 / 49

Overview about Pipelight What is Pipelight?

Idea behind Pipelight

“Pipelight allows one to run Windows browser

plugins in the context of Linux browsers”

To achieve this Pipelight ...

connects the Windows DLL with the Linux process

translates between platform dependent differences on the NPAPI

uses a patched wine version

and all that should be invisible and transparent for the user

6 / 49

Overview about Pipelight How does it work?

How does it work?

It is very complicated (or even impossible) to load DLLs directly into
a Linux process

→ fs and gs register is used for different purposes, exception handling
works completely different, ...

We therefore splitted up our project in two parts:

linux shared object ⇒ NPAPI plugin loaded into the browser

win32 pluginloader.exe ⇒ executed via Wine, loads the real DLL

pluginloader.exe is started (by the Linux library) when required,
afterwards communication via stdin & stdout

8 / 49

Overview about Pipelight Design decisions

Design decisions 1/2

“Isn’t this a bit complicated and slow?” No...

abstraction: allows to load 32 bit plugins in 64 bit browser

performance: audio and video is not transmitted via pipe

debugging: very easy to track down errors

→ WINEDEBUG captures only plugin and no browser API calls

“Why stdin & stdout?”

portability: works the same way on all platforms, allows reusing code

10 / 49

Overview about Pipelight Design decisions

Design decisions 2/2

“So Pipelight just acts as a wrapper?” No, Pipelight can also...

download: necessary dependencies (e.g. DLLs missing / broken
in Wine) and the plugin itself

install: extract required files

configure: the plugin (e.g. en/disable hardware acceleration)

update: the plugins

→ Pipelight is comparable with CrossOver, PlayOnLinux, ..., but just for
browser plugins

11 / 49

Browser API & Communication

Browser API

&

Communication

12 / 49

Browser API & Communication ActiveX vs NPAPI

Browser APIs

Most Windows plugins support two plugin APIs:

ActiveX

Internet Explorer only, COM based

Documentation available (≈839 pages)

ATL header files are only shipped with MSVC

NPAPI

Crossbrowser and crossplatform API

Easy: 4 header files, 19 plugin and 58 browser functions

Almost all (Linux/Windows/MacOS) browser support this API

⇒ We use NPAPI on both the Windows and Linux side

13 / 49

Browser API & Communication NPAPI

NPAPI

Netscape Plugin Application Programming Interface (NPAPI)

Introduced in 1996 and still gets extensions
(but Chrome is going to drop the support soon /)

The API mainly consists out of

Instances → e.g. running plugin instances

Objects → mainly used in conjunction with Javascript

Identifiers → IDs which correspond to strings or integers

Streams → HTTP(s) requests

Variants → objects or other basic data types

To redirect NPAPI we have to send all types of objects through pipes

14 / 49

Browser API & Communication Data transmission

Transmitting data

How to transmit the data of the function parameters?

Integer → just write the bytes into the pipe

Strings → calculate length and write it into the pipe

Structures → write memory block into the pipe

What about more complicated objects?

→ Note: passing pointers doesn’t make sense!

→ Serializing not possible, internal data is unknown.

⇒ Our solution: creating fake objects and use RPC-like function calls

15 / 49

Browser API & Communication Data transmission

Handle manager

Handle manager

containing all the logic to transmit datatypes and create fake objects

The handle manager offers convenience functions for writing and
reading such datatypes:

void writeHandleObj(NPObject *obj);

void writeHandleIdentifier(NPIdentifier name);

void writeHandleInstance(NPP instance);

void writeHandleStream(NPStream *stream);

void writeHandleNotify(void *notifyData);

....

⇒ Simplifies the logic in all the wrapper functions

16 / 49

Browser API & Communication Data transmission

Example

bool NP_LOADDS NPN_HasProperty(NPP instance, NPObject *obj,

NPIdentifier propertyName){

/* write arguments */

writeHandleIdentifier(propertyName);

writeHandleObj(obj);

writeHandleInstance(instance);

/* issue the command (async) */

callFunction(FUNCTION_NPN_HAS_PROPERTY);

/* wait for result, and return it */

return (bool)readResultInt32();

}

17 / 49

Browser API & Communication Data transmission

Handle manager

Writing objects

Check if this object pointer is known, if not:

Generate an unique ID

Add the mapping (ID ⇔ pointer) into an associative array

Write (type, ID) into the pipe

Reading objects

Check if this ID is known, if not:

Generate a fake object (allocate memory, ...)

Add the mapping (ID ⇔ pointer) into an associative array

Request additional information from the other side (if necessary)

Return the pointer

18 / 49

Browser API & Communication Remote function calls

Remote function calls 1/2

Calling remote function

caller:

Write an arbitrary count of parameters on the stack (rev. order)

Write the ID of the function onto the stack

callee:

Remote side dispatches the function

The called function has access to the values on the “stack”

Afterwards it places one or more return values onto the remote stack

caller:

The caller waits until all return values are received

19 / 49

Browser API & Communication Remote function calls

Remote function calls 2/2

We can now redirect NPAPI function calls through the pipe, do we
need anything further? Yes ...

The API is defined for all platforms, but it differs in some details,
mainly:

Drawing

Input events

The remaining challenge is to integrate seamless with Wine to
overcome these differences

20 / 49

Drawing & Input events

Drawing

&

Input events

21 / 49

Drawing & Input events Platform specific differences

Platform specific differences

Examples for platform specific differences of NPAPI plugins:

Drawing

X11 windows ⇔ hWnd

X11 drawables ⇔ hDC

Input events

X11 events ⇔ window messages

NPAPI timers ⇔ window message timers

22 / 49

Drawing & Input events Platform specific differences

NPAPI drawing modes

The standard drawing mode of the NPAPI is the windowed mode:

browser provides a window handle of an container

plugin creates a child window in the container

Besides that there is also windowless mode:

browser provides a drawable, plugin doesn’t use any window

23 / 49

Drawing & Input events Windowed mode / XEMBED

Windowed mode

Embedding a plugin into the browser

Windows:

Create a new (invisible) plugin window with Wine

Get X11 handle of the window

Linux:

Use XEMBED extension to embed the plugin into the browser

Windows:

Make the plugin window visible

24 / 49

Drawing & Input events Windowed mode / XEMBED

XEMBED

XEMBED needs interaction between the embedder and the client:

Synchronization of keyboard focus (very important!)

Synchronization of tab chain

Synchronization of keyboard short cuts

Wine didn’t didn’t support any of the above requirements

No keyboard input possible in the plugin or browser

Not possible to maximize a browser window again

We implemented keyboard focus synchronization into Wine and
patched many deadlocks when using Direct3D in child windows

25 / 49

Drawing & Input events Windowed mode / XEMBED

Example

/* Windows: Get X11 handle of the window */

XID x11window = (XID)GetPropA(hWnd,

"__wine_x11_whole_window");

...

/* Linux: Embed plugin into the container */

XReparentWindow(display, x11window, parent, 0, 0);

/* required for some very old toolkits */

sendXembedMessage(display, x11window,

XEMBED_EMBEDDED_NOTIFY, 0, parent, 0);

/* synchronize focus and show window ... */

26 / 49

Drawing & Input events Windowless mode

Windowless mode

Plugins wants to draw on a hDC, but we only have a X11 drawable

Easiest solution: Copy data from hDC to X11 drawable

→ slow and causes additional tearing

Is there a way to convert a X11 into a hDC?

Trick: Create a normal hDC and use a Wine internal ExtEscape
command to replace the X11 drawable

27 / 49

Drawing & Input events Windowless mode

Example

/* Windows: Create device context handle */

hDC = CreateDC("DISPLAY", NULL, NULL, NULL);

x11drv_escape_set_drawable args;

args.code = X11DRV_SET_DRAWABLE;

args.drawable = x11drawable; /* <---- */

/* fill out other arguments ... */

ExtEscape(hDC, X11DRV_ESCAPE, sizeof(args),

(char *)&args, 0, NULL);

/* draw on hDC as usual ... */

28 / 49

Drawing & Input events Event handling

Event handling in windowed mode

Fundamental platform difference:

Windows: browser calls WndProc callback

Linux: plugin fetches events directly from the Xserver

Additional problem: NPAPI is single threaded and we can not use an
additional thread for the event processing

Event handling

Linux:

Create an NPAPI timer (to issue calls in the main thread)

Windows:

for each timer event call PeekMessage() / DispatchMessage()

29 / 49

Browser plugins and Wine

Browser plugins and Wine

30 / 49

Browser plugins and Wine Browser plugins and Wine

Browser plugins and Wine

Most browser plugins do not work out of the box ...

Silverlight PlayReady DRM needs Access Control Lists (ACL)

Unity3D needs named pipes in message mode for it’s updater

Flash checks for a current driver date, otherwise Stage3D is disabled

Shockwave needs to be set to OpenGL mode

The sandbox of Adobe Reader crashes because of the memory layout

Solutions used so far ...

Wine patches (preferred)

Change plugin configuration (e.g. disable GPU check in Flash)

Use API hook if a patch could break other applications

31 / 49

Browser plugins and Wine Browser plugins and Wine

Wine patches

We created ≥ 50 patches (34 upstream) to fix such problems

Patches

Erich E. Hoover - ACL patches /
Address Change Notification / ...

Michael Müller - IDirect3DSwapChain9Ex /
VMR{7,9}MonitorConfig / ...

Sebastian Lackner - XEMBED /
various race conditions and bug fixes / ...

André Hentschel - Video Mixing Renderer 7 / ...

full patch list: http://fds-team.de/cms/pipelight-compile-wine.html

32 / 49

Browser & Plugin compatibility

Browser

&

Plugin compatibility

33 / 49

Browser & Plugin compatibility Browser compatibility

Browser compatibility and bugs

Chrom(ium), fixed in Firefox some time ago:

Browser calls notification events for streams that are already destroyed

Midori and several others:

no NPAPI timer support

Opera does not support NPAPI timers, but sets the function pointer
to a stub function instead of NULL ...

34 / 49

Browser & Plugin compatibility Plugin bugs

Plugin bugs 1/3

Most browser plugins are crappy, so that Chromium has implemented
many workarounds:

enum PluginQuirks {

SETWINDOW_TWICE = 1, // Win32

THROTTLE_WM_USER_PLUS_ONE = 2, // Win32

DONT_CALL_WND_PROC_RECURSIVELY = 4, // Win32

DONT_SET_NULL_WINDOW_HANDLE_ON_DESTROY = 8, // Win32

DONT_ALLOW_MULTIPLE_INSTANCES = 16, // Win32

DIE_AFTER_UNLOAD = 32, // Win32

PATCH_SETCURSOR = 64, // Win32

BLOCK_NONSTANDARD_GETURL_REQUESTS = 128, // Win32

WINDOWLESS_OFFSET_WINDOW_TO_DRAW = 256, // Linux

...

35 / 49

Browser & Plugin compatibility Plugin bugs

Plugin bugs 2/3

...

WINDOWLESS_INVALIDATE_AFTER_SET_WINDOW = 512, // Linux

NO_WINDOWLESS = 1024, // Windows

PATCH_REGENUMKEYEXW = 2048, // Windows

ALWAYS_NOTIFY_SUCCESS = 4096, // Windows

HANDLE_MOUSE_CAPTURE = 16384, // Windows

WINDOWLESS_NO_RIGHT_CLICK = 32768, // Linux

IGNORE_FIRST_SETWINDOW_CALL = 65536, // Windows

EMULATE_IME = 131072, // Windows

};

⇒ Pipelight tries to workaround such problems, but this is not always
possible

36 / 49

Browser & Plugin compatibility Plugin bugs

Plugin bugs 3/3

Pipelight also fixes some additional bugs:

Silverlight expects that COM is initialized with CoInitialize()

Silverlight expects the floating point flags to be set appropriately
(how much time we wasted to find this bug...)

Shockwave sometimes passes NULL as instance pointer
(is this a Wine bug?)

⇒ Pipelight detects such bugs and workarounds them
(the plugins are even more compatible than on Windows!)

37 / 49

Security

Security

38 / 49

Security Plugin security

Security

With the increasing sandbox security of browsers the plugins get more
and more interesting for attackers.

The most attacked plugins are:

Flash

Java

but also Silverlight gains more interest

So what about plugin vulnerabilities and Pipelight?

⇒ Lets take a closer look at a Silverlight exploit published recently

39 / 49

Security Plugin security

Silverlight Exploit - Explanation

How does it work?

Silverlight tries to protect the user by allowing only a subset of the
.NET API

The exploit uses two security vulnerabilities to get around this
restriction:

A way to read arbitrary memory and calculating the native pointer

Passing a native pointer as class constructor to a .NET command

This allows the exploit to execute its native payload

⇒ What happens if we try this with Pipelight?

41 / 49

Security Plugin security

Security layers

Protection offered by the separate components

Pipelight

some mistakes are caught by assertions

Plugins

often some kind of “sandbox”

can we trust the authors that there is no backdoor?

Wine

Wine doesn’t provide any protection, it just translates API calls

⇒ Can we somehow increase the security?

43 / 49

Security Plugin security

Security - Ideas

Some ideas on how to increase the security:

scanning for malicious code or viruses

removing Z: drive which points to “/”

check access restrictions on each API call

It is easy to get around these checks:

a program could directly execute syscalls

or even generate opcodes at runtime

⇒ We worked on our own security system for plugins

44 / 49

Security Pipelight-Sandbox

Pipelight-Sandbox (beta) approach

Pipelight-Sandbox runs plugins in a secure way using namespaces:

PID namespace - Other processes not visible

Mount namespace - Filesystem is readonly (except WINEPREFIX)

IPC namespace - Other sockets are not accessible

Network namespace - Restricted network access
(i.e. blocked 192.168.*, 10.*, ...)

Should protect against any kind of manipulation

The sandbox is not only usable with Pipelight

45 / 49

Security Pipelight-Sandbox

Pipelight-Sandbox (beta) approach

Pipelight-Sandbox can run any linux program and is highly
configurable:

Allow X server access?

Allow Pulseaudio access?

Allow network access?

Define writeable directories

works especially good with Wine as the number of writeable
directories is small

Some issues are still left:

allowing network access makes it possible to steal information

everything still beta, so use at your own risk!

46 / 49

End Conclusion

Conclusion

Now we’ve seen various aspects of Pipelight:

→ how the communication of the Linux ⇔ Windows parts work

→ transparent integration via XEMBED, ...

→ methods to improve the compatibility with browsers/plugins

→ how to enhance the security

But we’re not finished yet:

→ what about alternative plugin interfaces like PPAPI and ActiveX?

→ do we have similar options for Encrypted Media Extensions?

→ similar concepts could also be useful for other programs

→ ... and a lot more ideas!

47 / 49

End Questions?

Questions?

48 / 49

End Contact us

Contact us

Contact us:

Mail: michael@fds-team.de

sebastian@fds-team.de

IRC: #pipelight on freenode

Find out more about Pipelight:

https://launchpad.net/pipelight

http://fds-team.de

Sourcecode:

https://bitbucket.org/mmueller2012/pipelight

https://bitbucket.org/mmueller2012/pipelight-sandbox

Contributions are welcome!

49 / 49

