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About me
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Software developer working on Wine’s
Direct3D implementation for CodeWeavers

First learned about Wine in 1997
Wine conftributor since late 2005
Joined CodeWeavers in late 2008
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Infroduction

» Fairly brief, inaccurate
» |dea is to provide context rather than details

» 'l assume some familiarity with 3D graphics
e.g. won't be explaining what a texture or a shader is



History

\{

Initial DirectDraw implementation by Marcus Meissner in late 1997
TransGaming WineX/Cedega fork in 2001

Switch to the GNU LGPL in early 2002

Initial wined3d commit in late 2003

DirectDraw and Direct3D 8 on top of wined3d in 2006
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Key points

» We've been around for a while
* And we’d like 1o sfill be here in a few years,
so we tend to take the long view
» Can be frustrating for less experienced developers
» We have experience with both lax and copyleft licenses
e And there’s a clear winner

» We support a broad range of GPUs

* R300 and GeForce 4 are getting pretty rare
¢ R600 and GeForce 8 not so much



How things fit together

d3dx11

d3drm ddrawex d3dx9 d3di0 d3dx10 dadi
ddraw d3ds d3d9 d3d10core d3dil d3di2

wined3d

d3dcompiler winex11/wineandroid/etc.

OpenGL X11/Wayland/etc. Vulkan




Wined3d components
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State collection and application

Shader compiler

Blitter

Command stream

Screen/window handling

Adapter enumeration and capability reporting
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State collection and application

» Direct3D state is similar, but not quite the same as OpenGL state
e E.g. GL_MODELVIEW -> D3DTS_VIEW + D3DTS_WORLD

» Different implementations based on GL extensions.
e E.g. ARB_clip_control for pixel origin

» struct wined3d_state

» struct wined3d_context.state_table

» wined3d device_invalidate state()

» context_apply_draw_state()



Shader compiler
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Not the HLSL compiler; that one lives in d3dcompiler
Compile D3D bytecode to:

e GLSL; GLSL as a language has its issues, but is fairly easy to
understand and get starfed with

* SPIR-V; All the advantages of a binary format, and all the
disadvantages

¢ ARB fragment/vertex programs

Forked for libvkd3d-shader

struct wined3d_shader frontend, shader sml.c, shader_sm4.c
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struct wined3d_shader_backend ops, shader glsl select()



Blitter
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Why does this even exist?

» FBO blits would perhaps be the obvious choice, but didn’t exist for
most of Wine's history

e FBO blits can’t do everything. E.g. raw/typeless blits, P8 blits

* We want to do blits between CPU resources on the CPU

Blitters are tried in order

Perhaps not ideal to have a single blitter interface that can do
everything; Inherited from DirectDraw

struct wined3d_blitter_ops, blitter blit(), blitter_clear()
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Command siream

» Applications can call Direct3D from multiple threads, and
expect deterministic behaviour

» Multi-threaded OpenGL is a bit of a pain;
E.g. occlusion queries aren’t shared between contexts.

» We used to have StrictDrawOrdering; Very inefficient
» csmt serialises Direct3D operations intfo a single thread

» As a happy coincidence, there are performance
advantages as well

» wined3d _cs_emit_*()

» wined3d cs_exec_x()



Drivers

» Linux NVIDIA

¢ One of the first vendors to support accelerated OpenGL on Linux
e For along fime the only realistic option
¢ These days the only desktop vendor that doesn’t provide
Free Software drivers
e Nouveau is incredible, but faces challenges

» Linux Intel

» ‘Official’ Free Software driver since around 2007
Initial 3D hardware fairly weak

Current 3D hardware much more powerful
Generally well supported



Drivers

» Linux AMD/ATI

 Traditionally supported by fglrx/Catalyst
¢ Since around 2009 active support for the Free Software driver
* These days generally well supported

» Android

e Lofts of proprietary drivers
e Generally more challenging than regular Linux



Drivers

» MacQOS

o Apple is pretty much just hostile to Free Software

e Generally poor OpenGL support for many years; now simply
deprecated

e Vulkan only through MoltenVK

e Metal is a proprietary 64-bit only API, and only available to
Objective-C and Swift



Direct3D 12

Implemented on top of vkd3d

Somewhat of a testing ground for new ideas

May end up growing support for Direct3D 11 and before

» But Vulkan isn't necessarily a great fit for Direct3D 11 and before

» Pipeline object creation is expensive

¢ Only supported on fairly recent GPUs

 |f Direct3D 12 and Vulkan are really the future,
does it really make sense to invest effort in Direct3D 11
on top of Vulkan?
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Questions?



