An introduction to Wine Direct3D architecture

Henri Verbeet

WineConf 2018



About me

\4

Software developer working on Wine’s
Direct3D implementation for CodeWeavers

First learned about Wine in 1997
Wine conftributor since late 2005
Joined CodeWeavers in late 2008

\4

\{

v



Infroduction

» Fairly brief, inaccurate
» |dea is to provide context rather than details

» 'l assume some familiarity with 3D graphics
e.g. won't be explaining what a texture or a shader is



History

\{

Initial DirectDraw implementation by Marcus Meissner in late 1997
TransGaming WineX/Cedega fork in 2001

Switch to the GNU LGPL in early 2002

Initial wined3d commit in late 2003

DirectDraw and Direct3D 8 on top of wined3d in 2006

v

\4

\{

v



Key points

» We've been around for a while
* And we’d like 1o sfill be here in a few years,
so we tend to take the long view
» Can be frustrating for less experienced developers
» We have experience with both lax and copyleft licenses
e And there’s a clear winner

» We support a broad range of GPUs

* R300 and GeForce 4 are getting pretty rare
¢ R600 and GeForce 8 not so much



How things fit together

d3dx11

d3drm ddrawex d3dx9 d3di0 d3dx10 dadi
ddraw d3ds d3d9 d3d10core d3dil d3di2

wined3d

d3dcompiler winex11/wineandroid/etc.

OpenGL X11/Wayland/etc. Vulkan




Wined3d components

\4

State collection and application

Shader compiler

Blitter

Command stream

Screen/window handling

Adapter enumeration and capability reporting

\{

\{

\4

\{

\{



State collection and application

» Direct3D state is similar, but not quite the same as OpenGL state
e E.g. GL_MODELVIEW -> D3DTS_VIEW + D3DTS_WORLD

» Different implementations based on GL extensions.
e E.g. ARB_clip_control for pixel origin

» struct wined3d_state

» struct wined3d_context.state_table

» wined3d device_invalidate state()

» context_apply_draw_state()



Shader compiler

\4

Not the HLSL compiler; that one lives in d3dcompiler
Compile D3D bytecode to:

e GLSL; GLSL as a language has its issues, but is fairly easy to
understand and get starfed with

* SPIR-V; All the advantages of a binary format, and all the
disadvantages

¢ ARB fragment/vertex programs

Forked for libvkd3d-shader

struct wined3d_shader frontend, shader sml.c, shader_sm4.c

\4

v

\4

\{

struct wined3d_shader_backend ops, shader glsl select()



Blitter

\4

Why does this even exist?

» FBO blits would perhaps be the obvious choice, but didn’t exist for
most of Wine's history

e FBO blits can’t do everything. E.g. raw/typeless blits, P8 blits

* We want to do blits between CPU resources on the CPU

Blitters are tried in order

Perhaps not ideal to have a single blitter interface that can do
everything; Inherited from DirectDraw

struct wined3d_blitter_ops, blitter blit(), blitter_clear()

\4

\{

\{



Command siream

» Applications can call Direct3D from multiple threads, and
expect deterministic behaviour

» Multi-threaded OpenGL is a bit of a pain;
E.g. occlusion queries aren’t shared between contexts.

» We used to have StrictDrawOrdering; Very inefficient
» csmt serialises Direct3D operations intfo a single thread

» As a happy coincidence, there are performance
advantages as well

» wined3d _cs_emit_*()

» wined3d cs_exec_x()



Drivers

» Linux NVIDIA

¢ One of the first vendors to support accelerated OpenGL on Linux
e For along fime the only realistic option
¢ These days the only desktop vendor that doesn’t provide
Free Software drivers
e Nouveau is incredible, but faces challenges

» Linux Intel

» ‘Official’ Free Software driver since around 2007
Initial 3D hardware fairly weak

Current 3D hardware much more powerful
Generally well supported



Drivers

» Linux AMD/ATI

 Traditionally supported by fglrx/Catalyst
¢ Since around 2009 active support for the Free Software driver
* These days generally well supported

» Android

e Lofts of proprietary drivers
e Generally more challenging than regular Linux



Drivers

» MacQOS

o Apple is pretty much just hostile to Free Software

e Generally poor OpenGL support for many years; now simply
deprecated

e Vulkan only through MoltenVK

e Metal is a proprietary 64-bit only API, and only available to
Objective-C and Swift



Direct3D 12

Implemented on top of vkd3d

Somewhat of a testing ground for new ideas

May end up growing support for Direct3D 11 and before

» But Vulkan isn't necessarily a great fit for Direct3D 11 and before

» Pipeline object creation is expensive

¢ Only supported on fairly recent GPUs

 |f Direct3D 12 and Vulkan are really the future,
does it really make sense to invest effort in Direct3D 11
on top of Vulkan?

\4

\{

v



Questions?



