
An introduction to Wine Direct3D architecture

Henri Verbeet

WineConf 2018



About me

▶ Software developer working on Wine’s
Direct3D implementation for CodeWeavers

▶ First learned about Wine in 1997
▶ Wine contributor since late 2005
▶ Joined CodeWeavers in late 2008



Introduction

▶ Fairly brief, inaccurate
▶ Idea is to provide context rather than details
▶ I’ll assume some familiarity with 3D graphics

e.g. won’t be explaining what a texture or a shader is



History

▶ Initial DirectDraw implementation by Marcus Meissner in late 1997
▶ TransGaming WineX/Cedega fork in 2001
▶ Switch to the GNU LGPL in early 2002
▶ Initial wined3d commit in late 2003
▶ DirectDraw and Direct3D 8 on top of wined3d in 2006



Key points

▶ We’ve been around for a while
• And we’d like to still be here in a few years,

so we tend to take the long view
• Can be frustrating for less experienced developers

▶ We have experience with both lax and copyleft licenses
• And there’s a clear winner

▶ We support a broad range of GPUs
• R300 and GeForce 4 are getting pretty rare
• R600 and GeForce 8 not so much



How things fit together



Wined3d components

▶ State collection and application
▶ Shader compiler
▶ Blitter
▶ Command stream
▶ Screen/window handling
▶ Adapter enumeration and capability reporting



State collection and application

▶ Direct3D state is similar, but not quite the same as OpenGL state
• E.g. GL_MODELVIEW -> D3DTS_VIEW + D3DTS_WORLD

▶ Different implementations based on GL extensions.
• E.g. ARB_clip_control for pixel origin

▶ struct wined3d_state
▶ struct wined3d_context.state_table
▶ wined3d_device_invalidate_state()
▶ context_apply_draw_state()



Shader compiler

▶ Not the HLSL compiler; that one lives in d3dcompiler
▶ Compile D3D bytecode to:

• GLSL; GLSL as a language has its issues, but is fairly easy to
understand and get started with

• SPIR-V; All the advantages of a binary format, and all the
disadvantages

• ARB fragment/vertex programs
▶ Forked for libvkd3d-shader
▶ struct wined3d_shader_frontend, shader_sm1.c, shader_sm4.c
▶ struct wined3d_shader_backend_ops, shader_glsl_select()



Blitter

▶ Why does this even exist?
• FBO blits would perhaps be the obvious choice, but didn’t exist for

most of Wine’s history
• FBO blits can’t do everything. E.g. raw/typeless blits, P8 blits
• We want to do blits between CPU resources on the CPU

▶ Blitters are tried in order
▶ Perhaps not ideal to have a single blitter interface that can do

everything; Inherited from DirectDraw
▶ struct wined3d_blitter_ops, blitter_blit(), blitter_clear()



Command stream

▶ Applications can call Direct3D from multiple threads, and
expect deterministic behaviour

▶ Multi-threaded OpenGL is a bit of a pain;
E.g. occlusion queries aren’t shared between contexts.

▶ We used to have StrictDrawOrdering; Very inefficient
▶ csmt serialises Direct3D operations into a single thread
▶ As a happy coincidence, there are performance

advantages as well
▶ wined3d_cs_emit_*()
▶ wined3d_cs_exec_*()



Drivers

▶ Linux NVIDIA
• One of the first vendors to support accelerated OpenGL on Linux
• For a long time the only realistic option
• These days the only desktop vendor that doesn’t provide

Free Software drivers
• Nouveau is incredible, but faces challenges

▶ Linux Intel
• ‘Official’ Free Software driver since around 2007
• Initial 3D hardware fairly weak
• Current 3D hardware much more powerful
• Generally well supported



Drivers

▶ Linux AMD/ATI
• Traditionally supported by fglrx/Catalyst
• Since around 2009 active support for the Free Software driver
• These days generally well supported

▶ Android
• Lots of proprietary drivers
• Generally more challenging than regular Linux



Drivers

▶ MacOS
• Apple is pretty much just hostile to Free Software
• Generally poor OpenGL support for many years; now simply

deprecated
• Vulkan only through MoltenVK
• Metal is a proprietary 64-bit only API, and only available to

Objective-C and Swift



Direct3D 12

▶ Implemented on top of vkd3d
▶ Somewhat of a testing ground for new ideas
▶ May end up growing support for Direct3D 11 and before
▶ But Vulkan isn’t necessarily a great fit for Direct3D 11 and before

• Pipeline object creation is expensive
• Only supported on fairly recent GPUs
• If Direct3D 12 and Vulkan are really the future,

does it really make sense to invest effort in Direct3D 11
on top of Vulkan?



Questions?


